Physics, asked by sahoodebasmita606, 2 months ago

find differentiation with respect to x.(d/dx)​

Attachments:

Answers

Answered by Anonymous
4

Explanation:

\bold{1. \:  {x}^{ \frac{7}{2} } }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =  {x}^{ \frac{7}{2} } }

Differential with respect to x,

\bold{ \frac{dy}{dx} =  \frac{d}{dx}  \:   {x}^{ \frac{7}{2} } }

\bold{  = \frac{7}{2} {x}^{ \frac{7}{2} - 1 } \:  \: ( \because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })</p><p>

\bold{ =  \frac{7}{2} {x}^{ \frac{7 - 2}{2} }  }</p><p>

\bold{=   \frac{7}{2} {x}^{ \frac{5}{2} } }

 \bold{or \:  \:  \frac{7 {x}^{ \frac{5}{2} } }{2} }

\bold{2. \:  \sqrt{35} }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =   \sqrt{35}  }

Differential with respect to x,

\bold{ \frac{dy}{dx}  =  \frac{d}{dx}  \sqrt{35} }</p><p>

\bold{ = 0}

\bold3. \:  \: { \sqrt{x}}

 \large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =    \sqrt{x}  }

\bold{  = {x}^{ \frac{1}{2} } }

Differential with respect to x,

\bold{ \frac{dy}{dx}  =  \frac{d}{dx}  \: {x}^{ \frac{1}{2} }  }

\bold{ =  \frac{1}{2}  \: {x}^{ \frac{1}{2} - 1 }  \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

\bold {  = \frac{1}{2}  {x}^{ \frac{1 - 2}{2} } }

\bold{  = \frac{1}{2} ( {x})^{ -  \frac{1}{2} } }

\bold{ =  \frac{1}{2 {x}^{ \frac{1}{2} } } }

\bold{ =  \frac{1}{2  \sqrt{x}  } }

\bold{ 4.\:  \:  \:   {x}^{ - 3} }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y =  {x}^{ - 3} }[/tex]

Differential with respect to the x,

\bold{ =   - 3 {x}^{- 3}  \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

\bold{or \:  \:   \frac{ - 3}{ {x}^{3} } }

 \bold{6. \:  \:   \sqrt[3]{x}  }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =  \sqrt[3]{x} }

\bold{y =  {x}^{ \frac{1}{3} } }

Differential with respect to the x,

 \bold{ \frac{dy}{dx}  =  \frac{d}{dx}  {x}^{  \frac{1}{3}  } }

\bold{ =    \frac{1}{3}  {x}^{ \frac{1}{3}  + 1}  \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

 \bold{  = \frac{1}{3}  {x}^{ \frac{1 + 3}{3} } }

\bold{ =  \frac{1}{3}  {x}^{ \frac{4}{3} } }

\bold{7. \:  \: 3 {x}^{2} }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =  3 {x}^{2} }

Differential with respect to the x,

 \bold{  \frac{dy}{dx}  =  \frac{d}{dx} 3 {x}^{2} }

\bold{ = 3 \frac{d}{dx}  {x}^{2} }

\bold{ =  3 \times 2 {x}^{2 + 1}    \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

 \bold{ = 6 {x}^{3} }

 \bold{ 8. \:  \: {x}^{10} }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =   {x}^{10} }

Differential with respect to the x,

 \bold{ \frac{dy}{dx}  =  \frac{d}{dx}  {x}^{10} }

\bold{ =  10 {x}^{10 + 1}    \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

 \bold{ = 10 {x}^{11} }

 \bold{9. \:  \: \pi}

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =   \pi }

 \bold{y =  \frac{22}{7} }

Differential with respect to the x,

 \bold{ \frac{dy}{dx}  =  \frac{d}{dx } } \frac{22}{7}

 \bold{ = 0}

 \bold{10. \:  \:  {x}^{ \frac{3}{2} } }

\large\pink {\boxed{ \bold{ \green{Solution : }}}}

\bold{Suppose  \: y  =    {x}^{ \frac{1}{3} } }

Differential with respect to the x,

 \bold{  \frac{dy}{dx}  =  \frac{d}{dx} {x}^{ \frac{1}{3} }  }

\bold{ =   \frac{1}{3} {x}^{ \frac{1}{3}  + 1}    \:  \:  { (\because \:  \:  \frac{d}{dx}  {x}^{n} = n {x}^{n - 1}  })}

 \bold{  = \frac{1}{3}  {x}^{ \frac{1 + 3}{3} } }

 \bold{ \frac{ {x}^{ \frac{4}{3} } }{3} }

Similar questions