Math, asked by aditya20081, 1 year ago

Find
domain & Range of
1/1-x2​

Answers

Answered by Anonymous
25

Answer:

Domain is  R - { - 1 , 1 }

Range is  ( - ∞ , 0 ) U [ 1 , ∞ )

Step-by-step explanation:

Given :

\displaystyle{f(x)=\dfrac{1}{1-x^2}}

For Domain

F ( x ) to be real , we must have

\displaystyle{1-x^2\neq 0}\\\\\displaystyle{x^2\neq 1}\\\\\displaystyle{x\neq 1 \ or \ -1}

Domain of  f ( x ) = R - { - 1 , 1 }

For Range

\displaystyle{Let \ f(x) \ is \ to \ equal \ y}\\\\\displaystyle{y=\dfrac{1}{1-x^2}}\\\\\displaystyle{y(1-x^2)=1}\\\\\displaystyle{x^2=\dfrac{y-1}{y}}\\\\\displaystyle{x=\sqrt{\dfrac{y-1}{y}}}

x can take other value other than - 1 and 1 if

\displaystyle{\sqrt{\dfrac{y-1}{y}}>0}\\\\\\\displaystyle{\dfrac{y-1}{y}>0}\\\\\\\displaystyle{y-1\geq 0}\\\\\displaystyle{y\geq 1}

y ∈  [ 1 , ∞ )

y > 0

y ∈  ( - ∞ , 0 )

Intersection of both :

y ∈  ( - ∞ , 0 ) U [ 1 , ∞ )

Thus we get answer .

Answered by Anonymous
34

SOLUTION:-

Given:

f(x) =  \frac{1}{1 -  {x}^{2} }

Here,

1 -  {x}^{2}  = 0 \\  =  >  1 =  {x}^{2}  \\  =  > x =  ± x \ \\  =  > Df = R- ( - 1,1)

Now,

Let y= f(x)

Then:

y =  \frac{1}{1 - {x}^{2}  }  \\  \\  =  > y - y {x}^{2}  = 1 \\  \\  =  >  - y {x}^{2}  = 1 - y \\  \\   =  > y {x}^{2}  = y - 1 \\  \\  =  >  {x}^{2}  =  \frac{y - 1}{y}  \\  \\  =  > x =  \sqrt{ \frac{y - 1}{y} }

Hence, range of f(x) is all real number.

=) y<0 & y≥1

Hope it helps ☺️

Similar questions