Math, asked by munishchopra6538, 1 year ago

find domain and range:

f(x) = 1/2-sin 3x

Answers

Answered by ved859
1
Didn’t get the range
Attachments:
Answered by GalacticCluster
11

Answer:

 \\  \sf \: We \: have \: , \: f \: (x) =  \dfrac{1}{2 - sin \:  \: 3x}  \\

 \\  \large{ \underline{ \sf{ \: Domain \:  \: of \:  \: f \:  :  \: we \:  \: know \:  \: that}}} \\  \\  \\   \sf \:  - 1 \leqslant  \: sin \: 3x \leqslant 1 \:  \: for \:  \: all \:  \: x \:  \in \:  \: R\\  \\  \\  \implies \sf \:  - 1  \leqslant  \:  - sin \: 3x \leqslant 1 \:  \: for \:  \: all \:  \: x \:  \in \: R \\  \\  \\   \implies \sf \: 1 \leqslant 2 \:  - sin \: 3x \leqslant 3 \:  \: for \:  \: all \:  \: x \:  \in \: R \\  \\  \\  \implies  \sf \: 2 - sin \:  \: 3x \neq \: 0 \:  \: for \:  \: any \:  \: x \:  \in \: R \\  \\  \\  \implies \sf \: f(x) =  \dfrac{1}{2 - sin \:  \: 3x}  \:  \: is \:  \: defined \:  \: for \:  \: all \:  \: x \:  \in \: R \\

Hence, domain (f) = R.

_______________________________________

\\

 \\  \large{ \underline{ \sf{ \: Range \:  \: of \:  \: f \:  :  \: as \:  \: discussed \:  \: above}}}

\\ \\ \\

\sf \:  - 1 \leqslant  \: 2 \: -sin \:\:3x \leqslant 3 \:  \: for \:  \: all \:  \: x \:  \in \:  \: R

\\ \\ \\

\implies \sf\dfrac{1}{3}\:\leqslant \sf\dfrac{1}{2 - sin \:  \: 3x}\:\leqslant\:1\:\:for\:\:all\:\:x\:\in\:R

\\ \\ \\

\implies\sf\dfrac{1}{3}\:\leqslant\:f(x)\:\leqslant\:1\:\:for\:\:all\:\:x\:\in\:R

\\ \\ \\

\implies\sf{f(x)\:\in\:[1/3,1]}

\\ \\

Hence, range (f) = [ 1/3,1]

Similar questions