Math, asked by adith07, 9 months ago

Find domain and range of √(x^2 - 3x) ?​

Answers

Answered by rajeevr06
0

Answer:

For Domain,

 {x}^{2}  - 3x \geqslant 0

x(x - 3) \geqslant 0

so domain is

x \leqslant 0 \:  \: or \: x \geqslant 3

now Range,

 {x}^{2}  - 3x =  {x}^{2}  - 2 \times x \times  \frac{3}{2}  + ( \frac{3}{2} ) {}^{2}  - ( \frac{3}{2} ) {}^{2}  = (x -  \frac{3}{2} ) {}^{2}  -  \frac{9}{4}   =  \sqrt{(x -  \frac{3}{2} ) {}^{2}  -  \frac{9}{4}   }  \geqslant 0

Square root is greater than equal to zero.

so Range is [ 0 , infinity )

Similar questions