Math, asked by aryananwariya1234, 10 months ago

Find domain of th function:
 \sqrt{ {x}^{2} - 3 |x|  + 2 }
Jee aspirants try this​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow\sf{f(x)=\sqrt{x^2-3|x|+2}}

The whole function is in the form of a function in x under a square root. So the function under square root should be non - negative.

Because the function \sf{g(x)=\sqrt x} is defined for \sf{x\geq0.}

Thus,

\longrightarrow\sf{x^2-3|x|+2\geq0}

Case 1:- For \sf{x\geq0,}

\longrightarrow\sf{x^2-3x+2\geq0}

\longrightarrow\sf{x^2-x-2x+2\geq0}

\longrightarrow\sf{x(x-1)-2(x-1)\geq0}

\longrightarrow\sf{(x-1)(x-2)\geq0}

\Longrightarrow\sf{x\in[0,\ 1]\cup[2,\ \infty)\quad[\,\because\ x\geq 0\,]}

Case 2:- For \sf{x\leq0,}

\longrightarrow\sf{x^2+3x+2\geq0}

\longrightarrow\sf{x^2+x+2x+2\geq0}

\longrightarrow\sf{x(x+1)+2(x+1)\geq0}

\longrightarrow\sf{(x+1)(x+2)\geq0}

\Longrightarrow\sf{x\in(-\infty,\ -2]\cup[-1,\ 0]\quad[\,\because\ x\leq0\,]}

Hence the domain of \sf{f(x)} is,

\longrightarrow\sf{D=\Big[[0,\ 1]\cup[2,\ \infty)\Big]\cup\Big[(-\infty,\ -2]\cup[-1,\ 0]\Big]}

\Longrightarrow\sf{\underline{\underline{D=(-\infty,\ -2]\cup[-1,\ 1]\cup[2,\ \infty)}}}

Or,

\Longrightarrow\sf{\underline{\underline{D=\mathbb{R}-\big[(-2,\ -1)\cup(1,\ 2)\big]}}}

Attachments:
Answered by Alexpro
0

Follow and mark me as brainliest

I will follow you too.

Similar questions