Math, asked by aasikasivaji, 8 months ago

find du/dt. If u= xyz ,x= e^-t ,y=e^-t sin^2t ,z=sint​

Answers

Answered by nirman95
9

 \rm u = xyz

 \rm \implies u =(  {e}^{ - t} ) \{ {e}^{ - t}  { \sin}^{2}( t) \} \{\sin(t)  \}

 \rm \implies u = {e}^{ -2 t}   { \sin}^{3}( t)

Now, differentiation w.r.t 't':

 \rm \implies   \dfrac{du}{dt}  = \dfrac{d \bigg \{{e}^{ -2 t}   { \sin}^{3}( t) \bigg \}}{dt}

 \rm \implies   \dfrac{du}{dt}  ={ \sin}^{3}( t) \dfrac{d \bigg \{{e}^{ -2 t}    \bigg \}}{dt} +  {e}^{ - 2t}  \dfrac{d \bigg \{{ \sin}^{ 3} (t)   \bigg \}}{dt}

 \rm \implies   \dfrac{du}{dt}  = - 2{ \sin}^{3}( t) {e}^{ -2 t}   + 2 { \sin}^{2} (t)  \cos(t) {e}^{ - 2t}

 \rm \implies   \dfrac{du}{dt}  =  {e}^{ -2 t}  \bigg \{   2 { \sin}^{2} (t)  \cos(t)  - 2{ \sin}^{3}( t) \bigg \}

 \boxed{ \rm \implies   \dfrac{du}{dt}  = 2{ \sin}^{2}( t) {e}^{ -2 t}  \bigg \{    \cos(t)   - \sin( t) \bigg \}}

Hope It Helps.

Similar questions