Math, asked by nasimsheikh1964, 10 months ago

find DY by DX if x is equal to theta minus sin theta Y is equal to 1 minus cos theta at theta is equal to pi by 2​

Answers

Answered by Sharad001
139

Question :-

 \sf \: Find \:  \frac{dy}{dx}  \: if \: x =  \theta -  \sin \theta \:  \:  \: and \:  \sf \\ \sf y \:  = 1 -  \cos \theta \:  \: at \:  \theta \:  =  \frac{ \pi}{2} .

Answer :-

\to \:  \boxed{ \:  \:  \:  \sf \frac{dy}{dx}  \bigg|_{ \frac{ \pi}{2} } \:  = 1} \:

To Find :-

 \implies \sf \frac{dy}{dx}  \:  \:  \:  \: at \: \theta =  \frac{ \pi}{2}  \\

Solution :-

We have ,

 \to \sf \:  x =  \theta -  \sin \theta \\  \\  \sf \: differentiate \: with \: respect \: to \:  \theta\\  \\  \to \sf \frac{dx}{d \theta}  = 1 -  \cos \theta \:  \:  \: .......eq.(1) \\  \\  \bf \: and \: we \: have \\  \\  \to \sf \: y = 1 -  \cos \theta \\ \\  \:  \sf \: differentiate \: with \: respect \: to  \: \theta \\  \\  \to   \sf \: \frac{dy}{d \theta}  = 0 - ( -  \sin \theta) \\  \\  \to \sf \frac{dy}{dx}  =  \sin \theta \:  \:  \:  \: .......eq.(2) \\  \\ \sf  now \:  \:  \frac{eq.(1)}{eq.(2)}  \\  \\  \to \sf \frac{ \frac{dy}{d \theta} }{ \frac{dx}{ d \theta} }  =  \frac{ \sin \theta}{1 -  \cos \theta}  \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{ \sin \theta}{1 -  \cos \theta}  \\   \\ \sf  \leadsto  \frac{dy}{dx}  \:  \:  \: at  \: \theta \:  =  \frac{ \pi}{2}  \\  \sf \:  put  \: \theta =  \frac{ \pi}{2}  \\  \sf \:  \:  \to \frac{dy}{dx}  \bigg|_{ \frac{ \pi}{2} } \:  =  \frac{ \sin (\frac{ \pi}{2}) }{1 -  \cos (\frac{ \pi}{2}) }  \\  \\ \:  \sf   \to \: \frac{dy}{dx}  \bigg|_{ \frac{ \pi}{2} } \:  = \frac{1}{1 - 0}    \\  \\ \to \:  \boxed{ \:  \:  \:  \sf \frac{dy}{dx}  \bigg|_{ \frac{ \pi}{2} } \:  = 1}

Similar questions