Find dy/dx at x=45° if y=2-3cosx /sinx

Answers
Answer:
6 - 2√2
Step-by-step explanation:
Given Find dy/dx at x=45° if y=2-3cosx /sinx
Consider y = (2 - 3 cos x) / sin x
y = 2 /sin x - 3 cos x / sin x
y = 2 cosec x - 3 cot x
Now differentiating we get
dy/dx = d/dx (2 cosec x - 3 cot x)
= 2 d/dx( cosec x - 3 d/dx(cot x)
We know that d/dx (cosec x) = - cosecx cot x
d/dx (cotx) = - cosec^2 x
So dy/dx = 2(- cosecx cotx - 3 (- cosec^2 x)
= - 2 cosecx cot x + 3 cosec^2 x
Now we need to put values that is x = π / 4 or 45 degree
dy / dx = - 2 cosec 45 cot 45 + 3 cosec^2 45
= -2 √2 x 1 + 3 x (√2)^2
= - 2√2 + 2 x 3
So dy/dx = 6 - 2√2