Math, asked by vanshgupta50, 1 year ago


14(3y + 5z) ^{3}  + 7(3y - 5z) ^{2}


Answers

Answered by Anonymous
13
\large\sf{Ahoy !!}


<i>
Given :



\tt{14(3y + 5z)^3 + 7(3y - 5z)^2}



{\boxed{\tt{(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2}}}


{\boxed{\tt{(a - b)^2 = a^2 - 2ab + b^2}}}



{\tt{\underline{Here, \ a = 3y, \ b = 5z}}}




\tt{\Rightarrow 14[(3y)^3 + (5z)^3 + (3)(3y)^2(5z) +}
\tt{(3)(3y)(5z)^2] + 7[(3y)^2 - (2)(3y)(5z) +}
\tt{(5z)^2]}




\tt{\Rightarrow 14[27y^3 + 125z^3 + 135y^2z + 225yz^2]}
\tt{+ 7[9y^2 - 30yz + 25y^2]}




{\tt{\underline{Taking \ 7 \ as \ common.}}}




\tt{\Rightarrow 7 \{ 2[27y^3 + 125z^3 + 135y^2z +}
\tt{225yz^2] + 1[9y^2 - 30yz + 25y^2] \}}





\tt{\Rightarrow 7\{ 54y^3 + 250z^3 + 270y^2z + 450yz^2}
\tt{+ 9y^2 - 30yz + 25y^2 \}}




\tt\red{\Rightarrow 378y^3 + 1750z^3 + 1890y^2z +}
\tt\red{3150yz^2 + 63y^2 - 210yz + 175y^2}





\implies TooBusy ¯\_(ツ)_/¯

\implies BeBrainly

vanshgupta50: thanks
sapna69: aww status Sissy proud of u . n to whom u have dedicated I know btw well done
Anonymous: Hehe, Ty :)
Similar questions