Math, asked by Divyanshigandoriya, 1 year ago

Find dy/dx for the given function:y=(x-1)(x-2)/√x

Answers

Answered by brunoconti
13

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by feminasikkanther
2

Answer:

The equation (iii) is the required answer given below:

Step-by-step explanation:

Provided that:

Given function y = f(x) ;

y = f(x) = \frac{(x-1)(x-2)}{ \sqrt{x} } \: ...equation(i)

Simplifying this equation we get;

y =  \frac{(x-1)(x-2)}{ \sqrt{x} } \\ or \: y  =   \frac{{x }^{2}  - 3x + 2}{ {x}^{ \frac{1}{2} } }  \\ or \: y =  {x}^{ \frac{3}{2} }  - 3 {x}^{ \frac{1}{2} }  + 2 {x}^{ -  \frac{1}{2} }  \: ...equation(ii)

Differentiating equation (ii) with respect to x we get;

 \frac{dy}{dx}  =  \frac{3}{2} {x}^{  \frac{1}{2} }   -  (\frac{1}{2} \times 3)  {x}^{ -  \frac{1}{2} }  + ( -  \frac{1}{2}  \times 2) {x}^{ -  \frac{3}{2} }

So, simplifying this equation we get;

 \frac{dy}{dx}  =  \frac{3}{2}  \sqrt{x}    -  (\frac{3}{2} )  \frac{1}{ \sqrt{x} }   -  \frac{1}{{x}^{   \frac{3}{2} } }  \\  \\  \frac{dy}{dx}  =  \frac{3}{2}  \sqrt{x}    -  (\frac{3}{2} )  \frac{1}{ \sqrt{x} }   -  \frac{1}{ \sqrt[3]{x} } \\  \:  ...equation(iii)

So this is the required solution.

Similar questions