Math, asked by mimhar5rupala, 1 year ago

Find dy/ dx, if x 2/3 + y 2/3 = a 2/3 .

Answers

Answered by abhi178
13
x^2/3+y^2/3=a^2/3
differentiate w.r.t x
2/3.x^(2/3-1)+2/3.y^(2/3-1)dy/dx=0 ( because a is constant )
now
2/3x^-1/3+2/3y^-1/3dy/dx=0
dy/dx=-(x/y)^-1/3

Answered by sandy1816
2

{x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  \\ differentiate \:  \: w.r.t \:  \:  \: x \\  \frac{2}{3}  {x}^{ -  \frac{1}{3} }  +  \frac{2}{3}  {y}^{ -  \frac{1}{3} }  \frac{dy}{dx}  = 0 \\ \implies  {y}^{ -  \frac{1}{3} }  \frac{dy}{dx}  =  -  {x}^{ -  \frac{1}{3} }  \\  \implies \frac{dy}{dx}  =  -  \frac{ {x}^{ -  \frac{1}{3} } }{ {y}^{ -  \frac{1}{3} } }  \\  \implies \frac{dy}{dx}  =  -  \frac{ {y}^{ \frac{1}{3} } }{ {x}^{ \frac{1}{3} } }  \\  \implies \frac{dy}{dx}  =  -  \sqrt[3]{ \frac{y}{x} }

Similar questions