Math, asked by hackbot799, 1 month ago

find dy/dx if x^2y^2=tan(xy)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {x}^{2} {y}^{2} = tan(xy)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}[ \:  {x}^{2} {y}^{2} \: ] =\dfrac{d}{dx} tan(xy)

We know,

\green{ \boxed{ \sf{ \:\dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}}}

and

\green{ \boxed{ \sf{ \:\dfrac{d}{dx}tanx =  {sec}^{2}x}}}

So, using these, we get

\rm :\longmapsto\: {x}^{2}\dfrac{d}{dx} {y}^{2} +  {y}^{2}\dfrac{d}{dx} {x}^{2} =  {sec}^{2}(xy)\dfrac{d}{dx}(xy)

We know,

\green{ \boxed{ \sf{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}}

So, using this, we get

\rm :\longmapsto\: {x}^{2}(2y)\dfrac{dy}{dx} +  {y}^{2}(2x) =  {sec}^{2}(xy)\bigg[x\dfrac{d}{dx}y + y\dfrac{d}{dx}x\bigg]

\rm :\longmapsto\:2y {x}^{2}\dfrac{dy}{dx} +2x{y}^{2} =  {sec}^{2}(xy)\bigg[x\dfrac{dy}{dx} + y\bigg]

\rm :\longmapsto\:2y {x}^{2}\dfrac{dy}{dx} +2x{y}^{2} =  x{sec}^{2}(xy)\dfrac{dy}{dx} + {sec}^{2}(xy)

\rm :\longmapsto\:2y {x}^{2}\dfrac{dy}{dx}  - x{sec}^{2}(xy)\dfrac{dy}{dx}  =  {sec}^{2}(xy) - 2x {y}^{2}

\rm :\longmapsto\:\bigg[2y {x}^{2} - x{sec}^{2}(xy)\bigg]\dfrac{dy}{dx}  =  {sec}^{2}(xy) - 2x {y}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{{sec}^{2}(xy) - 2 {xy}^{2} }{ {2yx}^{2}  - x{sec}^{2}(xy)}

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{  \:  \:  \:  \:  \: \:\dfrac{dy}{dx} = \dfrac{{sec}^{2}(xy) - 2 {xy}^{2} }{ {2yx}^{2}  - x{sec}^{2}(xy)} \:  \:  \:  \:  \: }}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions