Math, asked by RJRishabh, 1 year ago

Find dy/dx , if x = acos¢ , y = asin¢ ​

Answers

Answered by TheLifeRacer
1

Hi !!

Solution :- Given that ,

x = acos¢ , y = asin¢

therefore dx/ = - asin¢ , dy/ = acos¢

Hence, dy/dx = dy/ /dx/d$ = acos¢/-asin¢ = - cot¢ Answer

__________________________

Hope it helps you !!!

@Raj

Answered by Swarnimkumar22
1

\bold{\huge{\underline{Answer-}}}

-cot

\bold{\huge{\underline{\underline{Used\:Formulas}}}}

 \boxed{1. \tt \:  \frac{d \: sin \theta}{d \theta} = cos \theta }  \\  \boxed{2. \tt \frac{d \: cos \theta}{d \theta}  =  - sin \theta}

\bold{\huge{\underline{Solution-}}}

Given - x = acos\theta , y = asin\theta

Now we need to find dy/dx but our Differentiability is based on \theta so we need to divide dy/dx by d\theta let's see

 \implies \sf  \frac{dy}{dx}  =  \frac{ \frac{dy}{d \theta} }{ \frac{dx}{d \theta} }  \\  \\  \implies \sf \:  \frac{ \frac{d \: asin \theta}{d \theta} }{ \frac{d \: acos \theta}{d \theta} }  \\  \\  \implies \sf \:  \frac{a \frac{ \: dsin \theta}{d \theta} }{a \frac{dcos \theta}{d \theta} }  \\  \\  \implies \sf \:  \frac{cos \theta}{ - sin \theta}  \\  \\  \implies \sf \:  - cot \theta

Similar questions