Find dy/dx , if
x=cos^-1(2t/1+t^2), y=sec^-1(√1+t^2)
(Derivartive of Parametric Functions)
Class 12 HSC
Answers
Given : x=cos^-1(2t/1+t^2), y=sec^-1(√1+t^2)
To find : dy/dx
Solution:
x=cos⁻¹(2t/(1+t²))
=> Cosx = 2t/(1+t²)
=> -Sinx dx/dt = 2t ( -1/(1 + t²)²)(2t) + 2/(1+t²)
=> -Sinx dx/dt = (-4t² + 2 + 2t²)/(1 + t²)²
=> -Sinx dx/dt = ( 2 - 2t²)/(1 + t²)²
=> dx/dt = - 2 ( 1 - t²)/(1 + t²)²Sinx
Sinx = √(1 - Cos²x) = √(1 - (2t/(1+t²))²) = (1-t²)/(1 + t²)
=> dx/dt = -2/(1+t²)
y=sec⁻¹(√1+t²)
secy = √1+t²
secytany dy/dt = t/√1+t²
=> tany dy/dt = t/(1+t²)
sec²y = 1 + tan²y
=> 1 + tan²y = 1 + t²
=> tany = t
t dy/dt = t/(1+t²)
=> dy/dt = 1/(1+t²)
dy/dx = (dy/dt)/(dx/dt)
=> dy/dx =( 1/(1+t²))/ ( -2/(1+t²))
=> dy/dx = -1/2
Another method :
x=cos⁻¹(2t/(1+t²)) y=sec⁻¹(√1+t²)
put t = tanα
=> x = cos⁻¹(2tanα/(1+tan²α)) = cos⁻¹(2tanα/(Sec²α)) = cos⁻¹(2SinαCosα)) = cos⁻¹(Sin2α) = cos⁻¹(Cos(π/2 -2α))
=π/2 -2α
dx/dα = -2
y=sec⁻¹(√1+t²) = sec⁻¹(√1+tan²α) = sec⁻¹(√sec²α) = sec⁻¹(secα) = α
dy/dα = 1
dy/dx = (dy/dα)/(dx/dα) = -1/2
learn more:
Solve the differential equation. dx/dt=my-nz, dx/dt=nz-lx, dz/dt=lx-my
https://brainly.in/question/15548591
x = sin t, y = cos 2t find dy/dx - Brainly.in
https://brainly.in/question/15287099
यदि x= sqrt{a} , y=sqrt{a}^{cos^{-1t}} तो दर्शाइए कि dy/dx
https://brainly.in/question/15287521
x = 4t, y = 4/t dy/dx find dy/dx - Brainly.in
https://brainly.in/question/15287077