Math, asked by harshvardhan1942005, 1 month ago

*Find dy/dx, If x = cos t - cos 2t and y = sin t - sin 2t* 1️⃣ (cos t - 2cos 2t)/(2sin 2t - sin t) 2️⃣ (cos 2t - 2 cost)/(2 sin 2t - sint) 3️⃣ (cos t - cos 2t)/(2 sin 2t - sint) 4️⃣ None of these​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given parametric functions are

\rm :\longmapsto\:x = cost - cos2t

and

\rm :\longmapsto\:y = sint - sin2t

Now, Consider

\rm :\longmapsto\:x = cost - cos2t

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} x =\dfrac{d}{dt} ( cost - cos2t)

\rm :\longmapsto\:\dfrac{dx}{dt} =\dfrac{d}{dt} cost - \dfrac{d}{dt} cos2t

We know,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}cosx =  -  \: sinx \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dx}{dt}  =  - sint + sin2t\dfrac{d}{dt} 2t

\rm :\longmapsto\:\dfrac{dx}{dt}  =  - sint + sin2t \times 2

\rm :\longmapsto\:\dfrac{dx}{dt}  =  - sint + 2sin2t

\rm \implies\:\boxed{ \tt{ \: \dfrac{dx}{dt} = 2sin2t - sint \: }}

Now, Consider

\rm :\longmapsto\:y = sint - sin2t

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} y =\dfrac{d}{dt}(sint - sin2t)

\rm :\longmapsto\:\dfrac{dy}{dt} =\dfrac{d}{dt}sint - \dfrac{d}{dt} sin2t

We know

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}sinx \:  =\: cosx \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dt} = cost - cos2t\dfrac{d}{dt} 2t

\rm :\longmapsto\:\dfrac{dy}{dt} = cost - cos2t \times 2

\rm :\longmapsto\:\dfrac{dy}{dt} = cost - 2cos2t

Thus,

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dt} = cost - 2cos2t \: }}

Now,

\rm :\longmapsto\:\dfrac{dy}{dx}

\rm \:  =  \:\dfrac{dy}{dt}  \div \dfrac{dx}{dt}

\rm \:  =  \:\dfrac{cost - 2cos2t}{2sin2t - sint}

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx}  \:  =  \:\dfrac{cost - 2cos2t}{2sin2t - sint}  \: }}}

  • Hence, Option (1) is correct

More to know :-

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions