Find dy/dx if x=cos2θ+2cosθ y=Sin2θ-2Sinθ
Answers
Answered by
0
dx/dθ = (-sin2θ)2 + 2(-sinθ)
= -2(sin2θ+sinθ)
dy/dθ= (cos2θ)2 - 2cosθ
=2(cos2θ - cosθ)
dx/dy= -2(sin2θ+sinθ)/2(cos2θ-cosθ)
= -(sin2θ+sinθ)/(cos2θ-cosθ)
= -2(sin2θ+sinθ)
dy/dθ= (cos2θ)2 - 2cosθ
=2(cos2θ - cosθ)
dx/dy= -2(sin2θ+sinθ)/2(cos2θ-cosθ)
= -(sin2θ+sinθ)/(cos2θ-cosθ)
Similar questions