Math, asked by krishnamurthys7769, 4 months ago

Find dy/dx if x + sin (xy)-y = 0​

Answers

Answered by tanujagautam107
1

Answer:

Step-by-step explanation:

plz mark me as brainliest

Attachments:
Answered by Manmohan04
1

Given,

\[x + \sin \left( {xy} \right) - y = 0\]

Solution,

\[x + \sin \left( {xy} \right) - y = 0\]

\[ \Rightarrow 1 + \cos \left( {xy} \right)\left( {x\frac{{dy}}{{dx}} + y} \right) - \frac{{dy}}{{dx}} = 0\]

\[ \Rightarrow 1 + x\cos \left( {xy} \right)\frac{{dy}}{{dx}} + y\cos \left( {xy} \right) - \frac{{dy}}{{dx}} = 0\]

\[ \Rightarrow \frac{{dy}}{{dx}}\left( {x\cos \left( {xy} \right) - 1} \right) + 1 + y\cos \left( {xy} \right) = 0\]

\[ \Rightarrow \frac{{dy}}{{dx}} = \frac{{ - \left( {1 + y\cos \left( {xy} \right)} \right)}}{{\left( {x\cos \left( {xy} \right) - 1} \right)}}\]

\[ \Rightarrow \frac{{dy}}{{dx}} = \frac{{\left( {1 + y\cos \left( {xy} \right)} \right)}}{{\left( {1 - x\cos \left( {xy} \right)} \right)}}\]

Hence the value of \[\frac{{dy}}{{dx}}\] is \[\frac{{\left( {1 + y\cos \left( {xy} \right)} \right)}}{{\left( {1 - x\cos \left( {xy} \right)} \right)}}\]

Similar questions