Math, asked by mkshinde77, 1 year ago

Find dy/DX if√x+√y=√a

Answers

Answered by silu12
45
1/2rootx+1/2rooty.dy/dx=0
=》1/2rooty. dy/dx= -1/2rootx
=》dy/dx= rooty/rootx


I think it will help you
Answered by pulakmath007
3

\displaystyle \sf{If \:  \:  \sqrt{x}  +  \sqrt{y}    =  \sqrt{a}  \:  \: then \:  \:  \frac{dy}{dx}  = 1 - \sqrt{ \frac{a}{x} }  }

Given :

\displaystyle \sf{\sqrt{x}  +  \sqrt{y}    =  \sqrt{a} }

To find :

\displaystyle \sf \:  \frac{dy}{dx}

Solution :

Step 1 of 3 :

Write down the given equation

The given equation is

\displaystyle \sf{ \sqrt{x}  +  \sqrt{y}    =  \sqrt{a} }

Step 2 of 3 :

Find the value of y

\displaystyle \sf{ \sqrt{x}  +  \sqrt{y}    =  \sqrt{a} }

\displaystyle \sf{ \sqrt{y}  =   \sqrt{a}     -   \sqrt{x} }

Squaring both sides we get

\displaystyle \sf{ y  = {(  \sqrt{a}     -   \sqrt{x} )}^{2} }

\displaystyle \sf{ \implies y  = a + x - 2 \sqrt{ax}  }

Step 3 of 3 :

Differentiate both sides

Differentiating both sides with respect to x we get

\displaystyle \sf{ \implies  \frac{dy}{dx}   = 0 + 1 - 2 \sqrt{a}  \times  \frac{1}{2} {x}^{   \frac{1}{2} - 1 }  }

\displaystyle \sf{ \implies  \frac{dy}{dx}   = 1 - \sqrt{a}  \times  {x}^{ -  \frac{1}{2} }  }

\displaystyle \sf{ \implies  \frac{dy}{dx}   = 1 - \sqrt{ \frac{a}{x} }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions