Math, asked by sunildeshmukh70263, 9 hours ago

Find dy/dx if √x+√y=√a

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \sqrt{x} +  \sqrt{y} =  \sqrt{a}

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}(\sqrt{x} +  \sqrt{y}) =  \dfrac{d}{dx}\sqrt{a}

We know,

\boxed{\tt{ \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}} \\

and

\boxed{\tt{ \dfrac{d}{dx}k \:  =  \: 0 \: }} \\

So, using these results, we get

\rm \: \dfrac{d}{dx} \sqrt{x} + \dfrac{d}{dx} \sqrt{y} = 0

We know,

\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } \: }} \\

So, using this result, we get

\rm \: \dfrac{1}{2 \sqrt{x} }  + \dfrac{1}{2 \sqrt{y} } \dfrac{dy}{dx} = 0

\rm \: \dfrac{1}{2 \sqrt{y} } \dfrac{dy}{dx} \:  =  -  \: \dfrac{1}{2 \sqrt{x} }

\rm \: \dfrac{1}{ \sqrt{y} } \dfrac{dy}{dx} \:  =  -  \: \dfrac{1}{\sqrt{x} }

\rm\implies \:\boxed{\tt{  \:  \: \dfrac{dy}{dx} =  -  \:  \frac{ \sqrt{y} }{ \sqrt{x} } \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions