Find dy/dx if x^y . y^x = x^x
Answers
Answered by
8
Answer:
d y / d x = ( x y + x y . ㏑ x - y² - x y . ㏑ y ) / ( x ㏑ x y + x² )
Step-by-step explanation:
Given :
x^y . y^x = x^x
Taking ㏑ both side :
= > ㏑ ( x^y . y^x ) = ㏑ ( x^x )
= > ㏑ x^y + ㏑ y^x = ㏑ x^x
= > y ㏑ x + x ㏑ y = x ㏑ x
Now diff. w.r.t. x :
= > y ( ㏑ x )' + ㏑ x ( y )' + x ( ㏑ y )' + ㏑ y ( x )' = x ( ㏑ x )' + ㏑ x ( x )'
= > y / x + ㏑ x ( d y / d x ) + x / y ( d y / d x ) + ㏑ y = x / x + ㏑ x
= > ( ㏑ x + x / y ) d y / d x = 1 - ㏑ x - y / x - ㏑ y
= > [ ( y ㏑ x + x ) / y ] d y / d x = ( x + x ㏑ x - y - x ㏑ y ) / x
= > d y / d x = ( x y + x y . ㏑ x - y² - x y . ㏑ y ) / ( x ㏑ x y + x² )
Hence we get required answer!
Similar questions
India Languages,
5 months ago
Math,
5 months ago
Math,
5 months ago
Science,
10 months ago
Math,
10 months ago
English,
1 year ago
Social Sciences,
1 year ago