Math, asked by aayushkalra9193, 10 months ago

Find dy/dx if x^y . y^x = x^x

Answers

Answered by BendingReality
8

Answer:

d y / d x = ( x y + x y . ㏑ x  - y² - x y . ㏑ y  ) / ( x ㏑ x y + x² )

Step-by-step explanation:

Given :

x^y . y^x = x^x

Taking ㏑ both side :

= >  ㏑ ( x^y . y^x ) = ㏑ ( x^x )

= > ㏑ x^y + ㏑ y^x = ㏑ x^x

= > y ㏑ x + x ㏑ y = x ㏑ x

Now diff. w.r.t. x :

= > y ( ㏑ x )' + ㏑ x ( y )' + x ( ㏑ y )' + ㏑ y ( x )' = x ( ㏑ x )' + ㏑ x ( x )'

= > y / x + ㏑ x ( d y / d x ) + x / y ( d y / d x ) + ㏑ y = x / x + ㏑ x

= >  ( ㏑ x + x / y ) d y / d x  = 1 - ㏑ x - y / x - ㏑ y

= >  [ ( y ㏑ x + x ) / y ] d y / d x  = ( x + x ㏑ x - y - x ㏑ y ) / x

= > d y / d x = ( x y + x y . ㏑ x  - y² - x y . ㏑ y  ) / ( x ㏑ x y + x² )

Hence we get required answer!

Similar questions