Math, asked by gayatrikakad65808, 4 months ago

find dy/dx if y=cosx÷logx by division rule

Answers

Answered by mathdude500
1

\bf \large\underbrace\orange{Question:}

  • Find dy/dx if y = cosx ÷ logx by division rule.

\bf \large \ \underbrace\orange{Answer:}

Given :-

\bf \:y = \dfrac{cosx}{logx}

To find :-

\bf \:\dfrac{dy}{dx}

Formula used :-

Division Rule

\bf \:\dfrac{d}{dx} (\dfrac{u}{v} ) = \dfrac{v\bf \:\dfrac{d}{dx} u - u\bf \:\dfrac{d}{dx} v}{ {v}^{2} }

\bf \:\dfrac{d}{dx} logx = \dfrac{1}{x}

\bf \:\dfrac{d}{dx} cosx =  - sinx

\bf\underbrace\red{Solution:}

\bf \:y = \dfrac{cosx}{logx}

Differentiate w. r. t. x, we get

\bf \:\dfrac{d}{dx} y = \dfrac{d}{dx} \dfrac{cosx}{logx}

\bf\implies \: \dfrac{dy}{dx}  = \dfrac{logx\bf \:\dfrac{d}{dx} cosx - cosx\bf \:\dfrac{d}{dx} logx}{ {(logx)}^{2} }

\bf\implies \: \dfrac{dy}{dx}  = \dfrac{logx( - sinx) - cosx \dfrac{1}{x} }{ {(logx)}^{2} }

\bf\implies \: \dfrac{dy}{dx}  =  - \dfrac{xlogx \: sinx  + cosx}{ x{(logx)}^{2} }

__________________________________________

Similar questions