find dy/dx if y=cosx upon 1+sinx
Answers
Answered by
2
ur answer ............
Attachments:

Reetkaur111:
oka
Answered by
0
y=cosx/1+sinx
dy/dx= (1+sinx).dcosx/dx-cosx.d(1+sinx)÷(1+sinx)^2
dy/dx= (1+sinx).(-sinx)-cosx.cosx÷(1+sinx)^2
dy/dx=-sinx-sin^2x-cos^2x÷(1+sinx)^2
dy/dx=-sinx-(sin^2x+cos^2x)÷(1+sinx)^2
dy/dx=-sinx-1÷(1+sinx)^2
dy/dx=-1÷1+sinx
dy/dx= (1+sinx).dcosx/dx-cosx.d(1+sinx)÷(1+sinx)^2
dy/dx= (1+sinx).(-sinx)-cosx.cosx÷(1+sinx)^2
dy/dx=-sinx-sin^2x-cos^2x÷(1+sinx)^2
dy/dx=-sinx-(sin^2x+cos^2x)÷(1+sinx)^2
dy/dx=-sinx-1÷(1+sinx)^2
dy/dx=-1÷1+sinx
Similar questions