English, asked by shyamal1022, 9 months ago

find dy/dx if y =e^2x+log5x+log7x​

Answers

Answered by Anonymous
16

Question:

y  =  {e}^{2x}  + log5x + log7x

Answer:

diff \: w.r.t.x

 \frac{dy}{dx}  =  {e}^{2x}  \frac{d}{dx} (2x) +  \frac{1}{5x}  \frac{d}{dx} (5x) +  \frac{1}{7x}  \frac{d}{dx} (7x) \\  \\  \frac{dy}{dx}  =  {e}^{2x} (2) +  \frac{1}{5x} (5) +  \frac{1}{7x} (7) \\  \\  \frac{dy}{dx}  = 2 {e}^{2x}  +  \frac{1}{x}  +  \frac{1}{x}

Formulae used:

 \star \:  \frac{d( {e}^{x} )}{dx}  =  {e}^{x}  \\  \\  \star \:  \frac{d(logx)}{dx}  =  \frac{1}{x}

Similar questions