Math, asked by kridar8047, 1 year ago

find dy/dx if y =(sec x+tanx )/(secx-tanx)

Answers

Answered by ashishks1912
14

GIVEN :

The  equation is y=\frac{secx+tanx}{secx-tanx}

TO FIND :

The first derivative of y

SOLUTION :

Given equation is y=\frac{secx+tanx}{secx-tanx}

To find the derivative of y

That is \frac{dy}{dx}:

Now we can simplify the given equation.

y=\frac{secx+tanx}{secx-tanx}

By using the formulae :

secx=\frac{1}{cosx} and tanx=\frac{sinx}{cosx}

y=\frac{\frac{1}{cosx}+\frac{sinx}{cosx}}{\frac{1}{cosx}-\frac{sinx}{cosx}}

y=\frac{\frac{1+sinx}{cosx}}{\frac{1-sinx}{cosx}}

y=\frac{1+sinx}{cosx}\times \frac{cosx}{1-sinx}

y=\frac{1+sinx}{1-sinx}

By using the formula:

d(\frac{u}{v})=\frac{v.\frac{du}{dx}-u.\frac{dv}{dx}}{v^2}

y=\frac{1+sinx}{1-sinx}

Now differentiating the above equation  y with respect to x

\frac{dy}{dx}=\frac{(1-sinx)(cosx)-(1+sinx)(-cosx)}{(1-sinx)^2} ( here u=1+sinx and v=1-sinx)

=\frac{cosx-sinx cosx+cosx+sinxcosx}{(1-sinx)^2}

=\frac{2cosx}{(1-sinx)^2}

\frac{dy}{dx}=\frac{2cosx}{(1-sinx)^2}

∴ the first derivative of y is \frac{dy}{dx}=\frac{2cosx}{(1-sinx)^2}

Answered by krishna0073687
3

Answer:

write this it is correct

Attachments:
Similar questions