Math, asked by ayushaaaa5, 6 months ago

find dy/dx if y=sec2x​

Answers

Answered by Anonymous
13

Knowledge required :

  • Chain rule of differentiation :

\boxed{\sf{\dfrac{dy}{dx} = \dfrac{d(y)}{d(u)} \times \dfrac{d(u)}{d(x)}}} \\ \\

  • Exponential rule of differentiation :

\boxed{\sf{\dfrac{d(x^{n})}{dx} = nx^{(n - 1)}}} \\ \\

Solution :

Given ,

  • \sf{f(y) = sec^{2}(x)}

\boxed{\sf{\dfrac{dy}{dx} = \dfrac{d(y)}{d(u)} \times \dfrac{d(u)}{d(x)}}} \\ \\

By applying the chain rule and substituting the values in it, we get :

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(y)}{d(u)} \times \dfrac{d(u)}{d(x)}} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(sec^{2}(x))}{d(sec(x))} \times \dfrac{d(sec(x))}{dx}} \\ \\ \\

Now by differentiating sec²x , we get :

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(sec^{2}(x))}{d(sec x)}} \\ \\ \\

By applying the rule of , x^n = nx^(n - 1) , we get :

:\implies \sf{\dfrac{dy}{dx} = 2 \times sec^{(2 - 1)}(x)} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2sec^{1}(x)} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2 sec(x)} \\ \\ \\

\boxed{\therefore \sf{\dfrac{d(sec^{2}(x))}{d(sec (x))} = 2 sec(x)}} \\ \\ \\

By differentiating sec x , we get :

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(sec(x))}{dx}} \\ \\ \\

We know that the differentiation of sec x i.e, sec(x)tan(x).

By substituting it in the equation , we get :

:\implies \sf{\dfrac{dy}{dx} = sec(x)tan(x)} \\ \\ \\

\boxed{\therefore \sf{\dfrac{d(sec(x))}{dx} = sec(x)tan(x)}} \\ \\ \\

Now we know the derivative of sec²x and sec x , so by substituting it in the equation , :

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d(sec^{2}(x))}{d(sec(x))} \times \dfrac{d(sec(x))}{dx}} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2sec(x) \times sec(x)tan(x)} \\ \\ \\

:\implies \sf{\dfrac{dy}{dx} = 2sec^{2}(x)tan(x)} \\ \\ \\

\boxed{\therefore \sf{\dfrac{d(sec^{2}(x))}{dx} = 2sec^{2}(x)tan(x)}} \\ \\ \\

Hence the derivative of sec²x is 2 sec²xtanx.

Similar questions