Math, asked by Theva3113, 1 year ago

Find dy/dx if y = sin-1(xsqrt(1-x)-sqrt(x(1-x^2)))

Answers

Answered by Anonymous
81
☆☆your answer is here☆☆

solution:--

∵ y = sinֿ¹ [ x.√(1-x) - √x. √(1-x²) ] 

∴ y = sinֿ¹ [ (x). √(1-(√x)²) - √x. √(1-(x)²) ] ....... (1) 
________________________________ 

Let : (x) = sin α and √x = sin ß. .................... (2) 

Then, from (1), 

y = sinֿ¹ [ sin α. √(1-sin² ß) - sin ß. √(1-sin² α) ] 

. = sinֿ¹ [ sin α. cos ß - sin ß. cos α ] 

. = sinֿ¹ [ sin ( α+ß ) ] 

. = α + ß 

. = sinֿ¹ x + sinֿ¹ √x ............. from (2) 
_____________________ 

∴ dy/dx = [ 1 / √(1-x²) ] + [ 1 / √(1-(√x)²) ]· d/dx ( √x ) 

. . . . . . = [ 1 / √(1-x²) ] + [ 1 / √(1-x) ]· [ 1 / (2√x) ] 

. . . . . . .= [ 1 / √(1-x²) ] + { 1 / [ 2√(x-x²) ] } 
Answered by anupama777vidya
59

Answer:

Refer to the attachment

Hope it helps you

Attachments:
Similar questions