Find dy/dx if y = sin-1(xsqrt(1-x)-sqrt(x(1-x^2)))
Answers
Answered by
81
☆☆your answer is here☆☆
solution:--
∵ y = sinֿ¹ [ x.√(1-x) - √x. √(1-x²) ]
∴ y = sinֿ¹ [ (x). √(1-(√x)²) - √x. √(1-(x)²) ] ....... (1)
________________________________
Let : (x) = sin α and √x = sin ß. .................... (2)
Then, from (1),
y = sinֿ¹ [ sin α. √(1-sin² ß) - sin ß. √(1-sin² α) ]
. = sinֿ¹ [ sin α. cos ß - sin ß. cos α ]
. = sinֿ¹ [ sin ( α+ß ) ]
. = α + ß
. = sinֿ¹ x + sinֿ¹ √x ............. from (2)
_____________________
∴ dy/dx = [ 1 / √(1-x²) ] + [ 1 / √(1-(√x)²) ]· d/dx ( √x )
. . . . . . = [ 1 / √(1-x²) ] + [ 1 / √(1-x) ]· [ 1 / (2√x) ]
. . . . . . .= [ 1 / √(1-x²) ] + { 1 / [ 2√(x-x²) ] }
solution:--
∵ y = sinֿ¹ [ x.√(1-x) - √x. √(1-x²) ]
∴ y = sinֿ¹ [ (x). √(1-(√x)²) - √x. √(1-(x)²) ] ....... (1)
________________________________
Let : (x) = sin α and √x = sin ß. .................... (2)
Then, from (1),
y = sinֿ¹ [ sin α. √(1-sin² ß) - sin ß. √(1-sin² α) ]
. = sinֿ¹ [ sin α. cos ß - sin ß. cos α ]
. = sinֿ¹ [ sin ( α+ß ) ]
. = α + ß
. = sinֿ¹ x + sinֿ¹ √x ............. from (2)
_____________________
∴ dy/dx = [ 1 / √(1-x²) ] + [ 1 / √(1-(√x)²) ]· d/dx ( √x )
. . . . . . = [ 1 / √(1-x²) ] + [ 1 / √(1-x) ]· [ 1 / (2√x) ]
. . . . . . .= [ 1 / √(1-x²) ] + { 1 / [ 2√(x-x²) ] }
Answered by
59
Answer:
Refer to the attachment
Hope it helps you
Attachments:
Similar questions