Physics, asked by sunalithakur3427, 15 hours ago

find dy / dx if y = (x-1) (x-2)/√x

Answers

Answered by SugarCrash
19

\sf\large\red{\underline{\underline{Question:}}}

  • Find dy / dx if y = (x-1) (x-2)/√x

\sf\large\red{\underline{\underline{Solution:}}}

We have ,

\sf \longmapsto \blue{y= \dfrac{ (x-1)(x-2)}{\sqrt x}}

 \dashrightarrow \sf y = \dfrac{ x^2-2x-x+2}{\sqrt x}  

 \dashrightarrow \sf y = \dfrac{ x^2-3x+2}{\sqrt x}  

\large\purple{\underbrace{\mathfrak{Diferentiating\;both\;sides\;with\;respect\;to\; \sf x : }}}

\\\dfrac{dy}{dx}=\dfrac{\sqrt{x}\dfrac{d}{dx}(x^2-3x+2)-(x^2-3x+2)\dfrac{d}{dx}\sqrt x}{\sqrt x ^2}

\dfrac{dy}{dx}=\dfrac{\sqrt x (2x-3)-(x^2-3x+2)\dfrac{1}{2}.x^{\frac{-1}{2}}}{x}

\dfrac{dy}{dx}=\dfrac{\sqrt x (2x-3)-(x^2-3x+2)\dfrac{1}{2\sqrt x}}{x}

\dfrac{dy}{dx}=\dfrac{\dfrac{2\sqrt x.\sqrt x (2x-3)-(x^2-3x+2)}{2\sqrt x}}{x}

\dfrac{dy}{dx}=\dfrac{\dfrac{2x(2x-3)-(x^2-3x+2)}{2\sqrt x}}{x}

\dfrac{dy}{dx}=\dfrac{2x(2x-3)-(x^2-3x+2)}{2x\sqrt x}

\dfrac{dy}{dx}=\dfrac{4x^2-6x-x^2+3x-2}{2x\sqrt x}

\dfrac{dy}{dx}= \dfrac{3x^2-3x-2}{2x\sqrt x}

\\\succ\large\purple{\underbrace{\mathfrak{Rationalising:}}}\\

\longmapsto \dfrac{3x^2-3x-2}{2x\sqrt x}\times\dfrac{\sqrt x}{\sqrt x}

\dashrightarrow \dfrac{\sqrt x(3x^2-3x-2)}{2x^2}

\sf\large\red{\underline{\underline{Therefore,}}}

  • \dfrac{dy}{dx}= \dfrac{\sqrt x(3x^2-3x-2)}{2x^2}

▬▬▬▬▬▬▬▬▬▬▬▬

\sf\large\red{\underline{\underline{Formulas\: Used:}}}

  • (U + V)' = U' + V'
  • (UV)'= U'V + V'U
  • \sf\left(\dfrac{U}{V}\right)'= \dfrac{V(U)'-U(V)'}{V^2}
  •  \dfrac{d}{dx}\sf x^n= n.x^{n-1}
Similar questions