Math, asked by manijabegum664, 1 month ago

find dy/dx if y=x ⁴sin3x​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\boxed{ \tt{ \: y =  {x}^{4}sin3x}}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{dy}{dx}  \:  \: }}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:y =  {x}^{4}sin3x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =  \dfrac{d}{dx}{x}^{4}sin3x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{4}\dfrac{d}{dx}sin3x + sin3x\dfrac{d}{dx} {x}^{4}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \:  \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}sinx = cosx \:  \: }}

So, on substituting these values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{4}cos3x\dfrac{d}{dx}3x + sin3x( {4x}^{3})

\rm :\longmapsto\:\dfrac{dy}{dx} = 3 {x}^{4}cos3x + 4 {x}^{3}sin3x

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} =  {x}^{3}(3xcos3x + 4sin3x) \:  \: }}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions