Math, asked by rk2733031, 5 months ago

find dy/dx if y = x^cos x + e^sin x​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  {x}^{ \cos(x) }  +  {e}^{ \sin(x) }  \\

 \implies \frac{dy}{dx}  =  {x}^{ \cos(x) } ( \frac{d}{dx} ( \cos(x)  ln(x) )) +  {e}^{ \sin(x) } . \cos(x)  \\

 \implies \frac{dy}{dx}  =  {x}^{ \cos(x) } ( -  \sin(x)  ln(x)  +  \cos(x) . \frac{1}{x} ) +  {e}^{ \sin(x) } . \cos(x)  \\

 \implies \frac{dy}{dx}  =  -  {x}^{ \cos(x) } . \sin(x) . ln(x)  +  {x}^{( \cos(x) - 1) } . \cos(x)  +  {e}^{ \sin(x) } . \cos(x)  \\

Similar questions