Physics, asked by sandeep187350, 1 year ago

find dy/dx of 1/x plz with explain I will give brain mark plz plz ​

Answers

Answered by Swarup1998
20
\underline{\mathrm{Solution :}}

\boxed{\star}\boxed{\textsf{Direct method-}}\boxed{\star}

\mathrm{Let,\:y=\frac{1}{x}}

\textsf{Diff. both sides w. r. to x, we get}

\mathrm{\frac{dy}{dx}=\frac{d}{dx}(\frac{1}{x})}

\mathrm{=\frac{d}{dx}(x^{-1})}

\mathrm{=(-1) * x^{-1-1}}

\mathrm{=-x^{-2}}

\mathrm{=-\frac{1}{x^{2}}}

\implies \boxed{\:\:\mathrm{\frac{dy}{dx}=-\frac{1}{x^{2}}}\:\:}

\underline{\textsf{Formula :}}

\mathrm{\frac{d}{dx}(x^{n})=n\:x^{n-1}\:,\:n\in \mathbb{R}}

\boxed{\star}\boxed{\textsf{Using first principle-}}\boxed{\star}

\mathrm{Let,\:f(x)=\frac{1}{x}}

\mathrm{Then,\:\frac{dy}{dx}}

\mathrm{=lim_{h \to 0} \frac{f(x+h)-f(x)}{h}}

\mathrm{=lim_{h \to 0} \dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}}

\mathrm{=lim_{h \to 0} \dfrac{\frac{x-x-h}{(x+h)x}}{h}}

\mathrm{=lim_{h \to 0} \frac{-h}{xh(x+h)}}

\mathrm{=lim_{h \to 0} \frac{-1}{x(x+h)}}

\mathrm{=-\frac{1}{x * x}}

\mathrm{=-\frac{1}{x^{2}}}

\to \boxed{\mathrm{\frac{dy}{dx} = -\frac{1}{x^{2}}}}
Similar questions