Math, asked by chetanvenkat1, 8 months ago

find dy/dx of x=acos 2tita and y=b sin 2tita​

Answers

Answered by Anonymous
4

y = a cos2θ

Diff. w.r.t.x

dy/dx = d/dx [ a cos2θ]

= a (-sin2θ) . d/dx 2θ

= - a -sin2θ

•°• dy/dx = - a sin2θ

And

y = b sin2θ

Diff. w.r.t.x

dy/dx = d/dx [ b sin2θ]

= b cos2θ

•°• dy/dx = b cos2θ

Answered by Anonymous
1

Given , the two functions are

x = acos(2θ)

y = bsin(2θ)

Differentiating x wrt θ , we get

 \tt \frac{dx}{d \theta}  =  \frac{d \{acos (2\theta) \}}{d \theta}

 \tt \frac{dx}{d \theta}  =a \frac{d \{cos(2 \theta) \}}{ d \theta}

 \tt \frac{dx}{d \theta}  = - asin( \theta) \frac{d \{2 \theta \}}{ d\theta}

 \tt \frac{dx}{d \theta}  = -2 asin(2 \theta)

Similarly , differentiating y wrt θ , we get get

\tt \frac{dy}{d \theta}  =  \frac{d \{asin (2\theta) \}}{d \theta}

 \tt \frac{dy}{d \theta}  =a \frac{d \{sin(2 \theta) \}}{ d \theta}

 \tt \frac{dy}{d \theta}  =  acos( \theta) \frac{d \{2 \theta \}}{ d\theta}

 \tt \frac{dy}{d \theta}  = 2 acos(2 \theta)

Now ,

dy/dx = {dy/dθ} ÷ {dx/dθ}

Thus ,

  \tt \implies \frac{dy}{dx}  =  -  \frac{2 acos(2 \theta)}{2 asin(2 \theta)}

\tt \implies \frac{dy}{dx}  =  -cot(2 \theta)

Therefore , the required answer is -cot(2θ)

____________________ Keep Smiling ☺️

Similar questions
Math, 1 year ago