Math, asked by Rahulsharma2018, 1 year ago

find dy÷dx of x2logxsinx

Answers

Answered by saurabhsemalti
3

y =  {x}^{2}  log_{}(x)  \sin(x)  \\ dy \div dx = 2x( log(x)  \sin(x) ) +  {x}^{2} (1 \div x) \sin(x)  +  {x}^{2}  log(x)  \cos( x)  \\ dy \div dx = 2x log(x)  \sin(x)  + x \sin(x)  +  {x}^{2}  log(x)  \cos(x)
here is your answer.....mark it brainliest if helped
Answered by BendingReality
10

Answer:

y' =  x ( x . log x . cos x + 2 . log x . sin x + sin x )

Step-by-step explanation:

Given :

y = x². log x. sin x

We have find its derivative :

We know product rule for three function :

i.e.  ( u . v . w )' = ( u . v ) ( w )' + ( v . w ) u' + ( u . w ) v'

= > d / d x ( sin x ) = cos x

= > d / d x ( log x ) = 1 / x

y = x². log x. sin x

= > d y / d x = ( x² . log x ) ( sin x )' + ( log x . sin x ) ( x² )' + ( x² . sin x ) ( log x )'

= > d y /d x = x² . log x . cos x + log x . sin x . 2 x + x² . sin x . 1 / x

= >  d y /d x = x² . log x . cos x + 2 x . log x . sin x + x . sin x

= > d y  / d x = x ( x . log x . cos x + 2 . log x . sin x + sin x )

Hence we get required answer.

Similar questions