find dy÷dx of x2logxsinx
Answers
Answered by
3
here is your answer.....mark it brainliest if helped
Answered by
10
Answer:
y' = x ( x . log x . cos x + 2 . log x . sin x + sin x )
Step-by-step explanation:
Given :
y = x². log x. sin x
We have find its derivative :
We know product rule for three function :
i.e. ( u . v . w )' = ( u . v ) ( w )' + ( v . w ) u' + ( u . w ) v'
= > d / d x ( sin x ) = cos x
= > d / d x ( log x ) = 1 / x
y = x². log x. sin x
= > d y / d x = ( x² . log x ) ( sin x )' + ( log x . sin x ) ( x² )' + ( x² . sin x ) ( log x )'
= > d y /d x = x² . log x . cos x + log x . sin x . 2 x + x² . sin x . 1 / x
= > d y /d x = x² . log x . cos x + 2 x . log x . sin x + x . sin x
= > d y / d x = x ( x . log x . cos x + 2 . log x . sin x + sin x )
Hence we get required answer.
Similar questions