Math, asked by aparajith2052000, 3 months ago

find dy/DX to the function y = 2x-3/3x+4 at x=1​

Answers

Answered by pulakmath007
5

SOLUTION

GIVEN

 \displaystyle \sf{y =  \frac{2x - 3}{3x + 4} }

TO DETERMINE

 \displaystyle \sf{\frac{dy}{dx}  \:  \: at \:  \: x = 1}

EVALUATION

Here it is given that

 \displaystyle \sf{y =  \frac{2x - 3}{3x + 4} }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ \frac{dy}{dx} =   \frac{(3x + 4) \frac{d}{dx} (2x - 3) - (2x - 3) \frac{d}{dx} (3x + 4)}{ {(3x + 4)}^{2} }  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx} =   \frac{2(3x + 4)  -3 (2x - 3) }{ {(3x + 4)}^{2} }  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx} =   \frac{6x + 8  -6x  + 9 }{ {(3x + 4)}^{2} }  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx} =   \frac{1 }{ {(3x + 4)}^{2} }  }

Putting x = 1 in both sides we get

 \displaystyle \sf{   \frac{dy}{dx} \bigg| _{x = 1} =   \frac{1 }{ {(3.1 + 4)}^{2} }  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx} \bigg| _{x = 1} =   \frac{1 }{ {(7)}^{2} }  }

 \displaystyle \sf{  \implies \: \frac{dy}{dx} \bigg| _{x = 1} =    \frac{1}{49}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

2. total derivative of the function xy is equal to

https://brainly.in/question/14915393

Similar questions