Math, asked by abbymc5459, 10 months ago

Find dy/dx X log y+ y log X=10

Answers

Answered by catuu
0

Answer:

\\\longrightarrow\sf{\cancel{352}

\\\longrightarrow\sf{\cancel{352} \: S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}

Given:

The curved surface area of cylinder = 352 cm²

Height of the cylinder = 8 cm

\bf{\large{\underline{\bf{To\:find\::}}}}

Tofind:

The Volume of the cylinder.

\bf{\large{\underline{\bf{Explanation\::}}}}

Explanation:

We know that formula of the C.S.A of cylinder :

A/q

\begin{lgathered}\longrightarrow\sf{352=2\times \dfrac{22}{7} \times r\times 8}\\\\\\\longrightarrow\sf{\cancel{352}=\dfrac{\cancel{44}}{7} \times r\times 8}\\\\\\\longrightarrow\sf{8=\dfrac{1}{7} \times 8r}\\\\\\\longrightarrow\sf{56=8r}\\\\\\\longrightarrow\sf{r=\cancel{\dfrac{56}{8} }}\\\\\\\longrightarrow\bf{r=7\:cm}\end{lgathered}

⟶352=2×

7

22

×r×8

352

=

7

44

×r×8

⟶8=

7

1

×8r

⟶56=8r

⟶r=

8

56

⟶r=7cm

Now;

We know that formula of the volume of cylinder :

\begin{lgathered}\longrightarrow\sf{Volume\:of\:cylinder=\dfrac{22}{\cancel{7}} \times \cancel{7} \times 7\times 8}\\\\\\\longrightarrow\sf{Volume\:of\:cylinder=(22\times 7\times 8)\:cm^{3} }\\\\\\\longrightarrow\sf{Volume\:of\:cylinder=(22\times 56)\:cm^{3} }\\\\\\\longrightarrow\bf{Volume\:of\:cylinder=1232\:cm^{3} }

 \\end{lgathered}  \

⟶Volumeofcylinder=

7

22

×

7

×7×8

⟶Volumeofcylinder=(22×7×8)cm

3

⟶Volumeofcylinder=(22×56)cm

3

⟶Volumeofcylinder=1232cm

3

Similar questions