Find dy/dx X log y+ y log X=10
Answers
Answer:
\\\longrightarrow\sf{\cancel{352}
S O L U T I O N :
\bf{\large{\underline{\bf{Given\::}}}}
Given:
The curved surface area of cylinder = 352 cm²
Height of the cylinder = 8 cm
\bf{\large{\underline{\bf{To\:find\::}}}}
Tofind:
The Volume of the cylinder.
\bf{\large{\underline{\bf{Explanation\::}}}}
Explanation:
We know that formula of the C.S.A of cylinder :
A/q
\begin{lgathered}\longrightarrow\sf{352=2\times \dfrac{22}{7} \times r\times 8}\\\\\\\longrightarrow\sf{\cancel{352}=\dfrac{\cancel{44}}{7} \times r\times 8}\\\\\\\longrightarrow\sf{8=\dfrac{1}{7} \times 8r}\\\\\\\longrightarrow\sf{56=8r}\\\\\\\longrightarrow\sf{r=\cancel{\dfrac{56}{8} }}\\\\\\\longrightarrow\bf{r=7\:cm}\end{lgathered}
⟶352=2×
7
22
×r×8
⟶
352
=
7
44
×r×8
⟶8=
7
1
×8r
⟶56=8r
⟶r=
8
56
⟶r=7cm
Now;
We know that formula of the volume of cylinder :
\begin{lgathered}\longrightarrow\sf{Volume\:of\:cylinder=\dfrac{22}{\cancel{7}} \times \cancel{7} \times 7\times 8}\\\\\\\longrightarrow\sf{Volume\:of\:cylinder=(22\times 7\times 8)\:cm^{3} }\\\\\\\longrightarrow\sf{Volume\:of\:cylinder=(22\times 56)\:cm^{3} }\\\\\\\longrightarrow\bf{Volume\:of\:cylinder=1232\:cm^{3} }
⟶Volumeofcylinder=
7
22
×
7
×7×8
⟶Volumeofcylinder=(22×7×8)cm
3
⟶Volumeofcylinder=(22×56)cm
3
⟶Volumeofcylinder=1232cm
3