Math, asked by pawarnikitaa97, 9 months ago

find dy/dx y= cos^3[log(x^3)]​

Answers

Answered by BrainlyPopularman
2

{ \bold{ \boxed{ \boxed{  \mathtt { \red{\huge{ \bigstar \: ANSWER  \: \bigstar}}}}}}}

{ \bold{ \mathtt{  \orange{\:  :  \implies \: y =  {cos}^{3}( log( {x}^{3} ))  }}}} \\  \\  \\ { \bold{ \mathtt{  \orange{\:  :  \implies \frac{dy}{dx} = 3 {cos}^{2}( log( {x}^{3} )  )( -  \sin( log( {x}^{3} ) ) ( \frac{1}{ {x}^{3} })(3 {x}^{2}  ) }}}} \\  \\  \\ { \bold{ \mathtt{  \orange{\:  :  \implies \frac{dy}{dx} =  -  9 {cos}^{2} ( log( {x}^{3} ))  \sin( log( {x}^{3} ) ) ( \frac{1}{x} ) }}}} \\  \\ { \bold{ \mathtt{ \green{ \underline{ \underline{Used \:  \:  formula }} :  - }}}} \\   \\ { \bold{ \pink{ \mathtt{(1) \: y =  {x}^{n}  \:  \implies \:  \frac{dy}{dx} = n {x}^{n - 1}  }}}} \\  \\  { \bold{ \pink{ \mathtt{(2) \: y =  \cos(x) \:  \implies \:  \frac{dy}{dx}   =  -  \sin(x) }}}} \\  \\  { \bold{ \pink{ \mathtt{(3)y =  log(x) \:  \implies \:  \frac{dy}{dx}  =  \frac{1}{x}  }}}}

Similar questions