Math, asked by samvaidya, 1 year ago

find dy/dx: y=cos√sinx

Answers

Answered by shashankavsthi
27

y =  \cos( \sqrt{ \sin(x) } )  \\  \frac{dy}{dx}  =   - (\sin( \sqrt[2]{sinx} ) . \frac{1}{2 \sqrt{ \sin(x) } } . \cos(x)
hope it will help u...
Answered by slicergiza
14

Answer:

-\sin (\sqrt{\sin x})\frac{1}{2\sqrt{\sin x}}cos x

Step-by-step explanation:

Given equation,

y=\cos\sqrt{ \sin x }

Differentiating with respect to x,

\frac{dy}{dx}=-\sin (\sqrt{\sin x})\frac{d}{dx}(\sqrt{\sin x})

(\because \frac{d}{dx} \cos x =-\sin x)

\frac{dy}{dx}=-\sin (\sqrt{\sin x})\frac{1}{2\sqrt{\sin x}}\frac{d}{dx}(\sin x)

(\because \frac{d}{dx} \sqrt{x}=\frac{1}{2\sqrt{x}})

\frac{dy}{dx}=-\sin (\sqrt{\sin x})\frac{1}{2\sqrt{\sin x}}cos x

(\because \frac{d}{dx} \sin x =\cos x)

Similar questions