Math, asked by pawarnikitaa97, 10 months ago

find dy/dx y=cot^3[log(x^3)]​

Answers

Answered by MaheswariS
6

\textbf{Given:}

y=cot^3[log(x^3)]

\textbf{To find:}

\dfrac{dy}{dx}

\textbf{Solution:}

\text{I have applied chain rule to differentiate the given function}

y=cot^3[log(x^3)]

\text{Differentiate with respect to x}

\dfrac{dy}{dx}=3\,cot^2[log(x^3)](-cosec^2[log(x^3)])(\dfrac{1}{x^3})(3x^2)

\dfrac{dy}{dx}=3\,cot^2[log(x^3)](-cosec^2[log(x^3)])(\dfrac{3}{x})

\dfrac{dy}{dx}=\dfrac{-9\,cot^2[log(x^3)](cosec^2[log(x^3)])}{x}

\text{Using}

\boxed{cosec^2A=1+cot^2A}\;\;\text{we get\,}

\dfrac{dy}{dx}=\dfrac{-9\,cot^2[log(x^3)](1+cot^2[log(x^3)])}{x}

\dfrac{dy}{dx}=\dfrac{-9}{x}[cot^2[log(x^3)]+cot^4[log(x^3)]]

\therefore\boxed{\bf\dfrac{dy}{dx}=\dfrac{-9}{x}[cot^2[log(x^3)]+cot^4[log(x^3)]]}

Find more:

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

Similar questions