Math, asked by rinsonraju02, 2 months ago

find dy/dx y = (x^2+1)^10 sec5x​

Attachments:

Answers

Answered by sandy1816
2

y = ( {x}^{2}  + 1) ^{10} sec5x \\  \frac{dy}{dx}  = (  { {x}^{2} + 1 })^{10}  \frac{d}{dx} sec5x +   sec5x \frac{d}{dx} ( { {x}^{2} + 1 })^{10}  \\  = ( { {x}^{2}  + 1})^{10} .sec5xtan5x \frac{d}{dx} 5x + sec5x .\: 10( {x}^{2}  + 1)  ^{9} \frac{d}{dx} ( {x}^{2}  + 1) \\  = 5sec5xtan5x( { {x}^{2}  + 1})^{10}  + 10( { {x}^{2} + 1 })^{9} 2x.sec5x \\  \frac{dy}{dx}  = 5sec5xtan5x( { {x}^{2}  + 1})^{10}  + 20x( { {x}^{2}  + 1})^{9} sec5x

Similar questions