Find each of the following products applying identities
a ) (3x + 5y) (3x + 5y)
b ) (3x² + 2) (3x² + 2)
Answers
here we have to use the concept of algebraic identities and we have to multiply the expression by themselves only .
∴ we can apply identities to solve them .
_______________________________________________
IDENTITIES WHICH WE HAVE TO USE TO SOLVE THESE EQUATIONS :-
_______________________________________________
† ANSWER :-
a ) 9x² + 30xy + 25y²
b ) 9x⁴ + 12x² + 4
_______________________________________________
a ) (3x + 5y) (3x + 5y)
By applying the identity
★ [ (a+b)² = a² + 2ab + b² ]
_______________________________________________
b ) (3x² + 2) (3x² + 2)
By applying the identity
★ [ (a+b)² = a² + 2ab + b² ]
_______________________________________________
By applying the identity
★ [ (a+b)² = a² + 2ab + b² ]
_______________________________________________
By applying the identity
★ [ (a+b)² = a² + 2ab + b² ]
_______________________________________________
ALGEBRAIC IDENTITIES -
Identity 1: (a + b)² = a² + 2ab + b²
Proof:
(a + b)² = (a + b) (a + b)
(a + b)² = a(a + b) + b(a + b)
(a + b)² = a² + ab + ba + b²
(a + b)² = a² + 2ab + b²
→ Hence, (a + b)² = a²+ 2ab + b²
Identity 2: (a -b)² = a² - 2ab + b²
Proof:
(a - b)² = (a - b) (a - b)
(a - b)² = a( a - b ) -b( a - b )
(a - b)² = a² - ab - ba + b²
(a - b)² = a² - 2ab + b²
→ Hence, (a – b)² = a² - 2ab + b2
Identity 3: a² - b² = (a + b) (a-b)
Identity 4: (x +a) (x+ b) = x² + (a + b)x + ab
Proof:
(x + a) (x + b) = x(x + b) + a(x + b)
(x + a) (x + b) = x² + bx + ax + ab
(x + a) (x + b) = x² + ax + bx + ab
(x + a) (x + b) =x² + (a + b)x + ab
→ Hence, (x + a) (x + b) = x² + (a + b)x + ab
a ) (3x + 5y) (3x + 5y)
→ 9x² + 30xy + 25y²
b ) (3x² + 2) (3x² + 2)
→ 9x⁴ + 12x² + 4
→
→