Find equation of hyperbola given foci and vertices calculator
Answers
Answered by
0
Equation of the hyperbola: x2−4y2=49 or x2−4y2−49=0.
Graph: to graph the hyperbola, visit hyperbola graphing calculator (choose the implicit option).
Standard form: x249−4y249=1.
Center: (0,0).
Vertices: (−7,0), (7,0).
Co-vertices: (0,−72)=(0,−3.5), (0,72)=(0,3.5).
Foci: (−75–√2,0)≈(−7.82623792124926,0), (75–√2,0)≈(7.82623792124926,0).
Eccentricity: 5–√2≈1.11803398874989.
Focal Parameter: 75–√10≈1.56524758424985.
Major axis length: 14.
Semimajor axis length: 7.
Minor axis length: 7.
Semiminor axis length: 72=3.5.
First asymptote: y=−x2=−0.5x
Second asymptote: y=x2=0.5x
First directrix: x=−145–√5≈−6.26099033699941.
Second directrix: x=145–√5≈6.26099033699941.
x-intercepts: (−7,0),(7,0).
No y-intercepts.
Similar questions