Math, asked by shivanu57, 8 months ago

Find equation of line Passing through points (a cos alpha,a sin alpha) and ( a cis bita,a sin beta)​

Answers

Answered by Intelligentcat
30

Answer:

\Large{\underline{\underline{\bf{QuEsTiOn:-}}}}

Find equation of line Passing through points (a cos alpha,a sin alpha) and ( a cis bita,a sin beta)

\mathfrak{\huge{\pink{\underline{\underline{Answer :}}}}}

The equation of line is,

 \large{\cot(\frac{ \alpha  +  \beta }{2})) x + y - asin \alpha   - acos \alpha ( \cot( \frac{ \alpha  +  \beta }{2})) = 0 \: }

Given points :

( a cosα, a sinα), ( a cosβ, a sinβ)

The equation of line passing through,

The equation of line passing through, ( x₁, y₁), (x₂, y₂) is,

y - y₁ = m ( x - x₁)

Here, m = (y₂ - y₁) ÷ (x₂ - x₁)

So for the given points, Let's find the slope m.

m =  \dfrac{ a \sin( \beta ) - a \sin( \alpha )  }{a \cos(  \beta ) - a \cos( \alpha )  }  \\  \\ m =  \dfrac{ a (\sin( \beta ) -  \sin( \alpha ))  }{a( \cos(  \beta ) -  \cos( \alpha ) ) }  \\  \\ m =  \dfrac{  \sin( \beta ) -  \sin( \alpha )  }{ \cos(  \beta ) -  \cos( \alpha )  }  \\  \\ m \:  =  \frac{2 \cos( \frac{ \alpha  +  \beta }{2}) . \sin(\frac{ \alpha   -  \beta }{2}) }{ - 2 \sin( \frac{ \alpha  +  \beta }{2}) . \sin(\frac{ \alpha   -  \beta }{2})}  \\  \\ m  =  -  \cot (\frac{ \alpha  +  \beta }{2})

Now, The equation of line joining the points is,

y - a \sin( \alpha )  =  -  \cot(\frac{ \alpha  +  \beta }{2}))(x - a \cos( \alpha )   \\  \\  \cot(\frac{ \alpha  +  \beta }{2})) x + y - asin \alpha   - acos \alpha ( \cot( \frac{ \alpha  +  \beta }{2})) = 0

Answered by dilliprasaddhakal528
1

Equation of line passing points (x₁,y₁) and (x₂,y₂) is

y-y₁ =y₂-y₁/x₂-x₁ (x-x₁)

or, y-asinα = asinβ-asinα/acosβ-acosα (x-acosα)

or, , (y-asinα)(cosβ-cosα) = (sinβ-sinα)(x-acosα)

This is required equation.

Similar questions