Math, asked by hrpadia2004, 1 month ago

find equation of tangent to curve x²+y²=5 where tangent is parallel to line 2x-y+1=0​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \boxed{ \tt{ \green{ Given \:  \: curve  \colon\:  \:  \pink{ {x}^{2}  +  {y}^{2} = 5 } }}}

Differentiating it w.r.t. x,

  \sf{2x + 2y \dfrac{dy}{dx} = 0 }

  \sf{ \implies \dfrac{dy}{dx} =   - \dfrac{x}{y}  }

   \sf{ \implies \blue{ \dfrac{dy}{dx} \bigg|_{(h , k)}=   - \dfrac{h}{k}}  }

Now,

the tangent is parallel to  \boxed{\purple{\rm{2x-y+1=0}}}

Slope of the above line is 2

So,

 \sf{ -  \dfrac{h}{k}  = 2}

 \sf{  \implies h  =  - 2k}

(h,k) lies on the curve, to find the coordinates of this point put (h,k) on the curve,

So,

 \sf{ {h}^{2} +  {k}^{2}    = 5}

 \sf{ \implies {( - 2k)}^{2} +  {k}^{2}    = 5}

 \sf{ \implies 4{k}^{2} +  {k}^{2}    = 5}

 \sf{ \implies 5{k}^{2}  = 5}

 \sf{ \implies {k}^{2}  = 1}

 \sf{ \implies k  = \pm 1}

So,

 \sf{h =   \mp 2}

So required coordinates of points , where, tangent is parallel to the given line are

\sf{\color{cyan}(\pm1,\mp2)}

 \boxed{ \large{ \rm{ \bold{ \red{  \bull \:  \: Equation \:  \: of \:  \: tangent \colon }}}}}

 \sf{ \{y  - ( \pm 1) \} = 2 \{x - ( \mp2) \} }

 \sf{ \implies \: y   \mp 1 = 2 (x \pm2)  }

 \sf{ \implies \: y   \mp 1 = 2x \pm4  }

 \sf{ \implies \: y   - 2x= \pm4 \pm1  }

 \sf{ \implies \: y   - 2x= \pm5   }

Similar questions