Math, asked by Ameesha6, 1 year ago

find equation of the line

Attachments:

Answers

Answered by shadowsabers03
13

By normal form the equation of the line will be,

\displaystyle\longrightarrow x\cos\omega+y\sin\omega=\sqrt2

Case 1:- Let our line have negative slope, which implies the line makes an obtuse angle with positive x axis, i.e.,

\longrightarrow\theta\in\left(\dfrac{\pi}{2},\ \pi\right)

Relation between \theta and \omega is \theta=\dfrac{\pi}{2}+\omega. So,

\longrightarrow\dfrac{\pi}{2}+\omega\in\left(\dfrac{\pi}{2},\ \pi\right)

\longrightarrow\omega\in\left(0,\ \dfrac{\pi}{2}\right)

Putting (x, y) = (√3, -1) in the equation of our line,

\displaystyle\longrightarrow \sqrt3\cos\omega-\sin\omega=\sqrt2

Dividing by 2,

\displaystyle\longrightarrow\dfrac{\sqrt3}{2}\cos\omega-\dfrac{1}{2}\sin\omega=\dfrac{1}{\sqrt2}

\displaystyle\longrightarrow\sin\left(\dfrac{\pi}{3}\right)\cos\omega-\cos\left(\dfrac{\pi}{3}\right)\sin\omega=\dfrac{1}{\sqrt2}

\displaystyle\longrightarrow\sin\left(\dfrac{\pi}{3}-\omega\right)=\dfrac{1}{\sqrt2}

But,

\longrightarrow\omega\in\left(0,\ \dfrac{\pi}{2}\right)

\longrightarrow-\omega\in\left(-\dfrac{\pi}{2},\ 0\right)

\longrightarrow\dfrac{\pi}{3}-\omega\in\left(-\dfrac{\pi}{6},\ \dfrac{\pi}{3}\right)\ni\dfrac{\pi}{4}

So,

\displaystyle\longrightarrow\dfrac{\pi}{3}-\omega=\dfrac{\pi}{4}

\displaystyle\longrightarrow\omega=\dfrac{\pi}{12}

Note that ω lies in 1st quadrant, so (cos ω) > 0, (sin ω) > 0.

Now,

\longrightarrow\cos\omega=\sqrt{\dfrac{1+\cos(2\omega)}{2}}

\longrightarrow\cos\left(\dfrac{\pi}{12}\right)=\sqrt{\dfrac{1+\cos\left(\dfrac{\pi}{6}\right)}{2}}

\longrightarrow\cos\left(\dfrac{\pi}{12}\right)=\sqrt{\dfrac{1+\dfrac{\sqrt3}{2}}{2}}

\longrightarrow\cos\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt{2+\sqrt3}}{2}

\longrightarrow\cos\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt{4+2\sqrt3}}{2\sqrt2}

\longrightarrow\cos\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt3+1}{2\sqrt2}

and,

\longrightarrow\sin\omega=\sqrt{\dfrac{1-\cos(2\omega)}{2}}

\longrightarrow\sin\left(\dfrac{\pi}{12}\right)=\sqrt{\dfrac{1-\cos\left(\dfrac{\pi}{6}\right)}{2}}

\longrightarrow\sin\left(\dfrac{\pi}{12}\right)=\sqrt{\dfrac{1-\dfrac{\sqrt3}{2}}{2}}

\longrightarrow\sin\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt{2-\sqrt3}}{2}

\longrightarrow\sin\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt{4-2\sqrt3}}{2\sqrt2}

\longrightarrow\sin\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt3-1}{2\sqrt2}

Hence the equation of our line becomes,

\displaystyle\longrightarrow x\left(\dfrac{\sqrt3+1}{2\sqrt2}\right)+y\left(\dfrac{\sqrt3-1}{2\sqrt2}\right)=\sqrt2

\displaystyle\longrightarrow\underline{\underline{\left(\sqrt3+1\right)x+\left(\sqrt3-1\right)y=4}}

Case 2:- Let our line have positive slope, which implies the line makes an acute angle with positive x axis, i.e.,

\longrightarrow\theta\in\left(0,\ \dfrac{\pi}{2}\right)

\longrightarrow\dfrac{\pi}{2}+\omega\in\left(0,\ \dfrac{\pi}{2}\right)

\longrightarrow\omega\in\left(-\dfrac{\pi}{2},\ 0\right)

Putting (x, y) = (√3, -1) in the equation of our line,

\displaystyle\longrightarrow \sqrt3\cos\omega-\sin\omega=\sqrt2

which gives, as we see earlier,

\displaystyle\longrightarrow\sin\left(\dfrac{\pi}{3}-\omega\right)=\dfrac{1}{\sqrt2}

But,

\longrightarrow\omega\in\left(-\dfrac{\pi}{2},\ 0\right)

\longrightarrow-\omega\in\left(0,\ \dfrac{\pi}{2}\right)

\longrightarrow\dfrac{\pi}{3}-\omega\in\left(\dfrac{\pi}{3},\ \dfrac{5\pi}{6}\right)\ni\dfrac{3\pi}{4}

So,

\displaystyle\longrightarrow\dfrac{\pi}{3}-\omega=\dfrac{3\pi}{4}

\displaystyle\longrightarrow\omega=-\dfrac{5\pi}{12}

Note that ω lies in 4th quadrant, so (cos ω) > 0, (sin ω) < 0.

Now,

\longrightarrow\cos\left(-\dfrac{5\pi}{12}\right)=\sqrt{\dfrac{1+\cos\left(-\dfrac{5\pi}{6}\right)}{2}}

\longrightarrow\cos\left(-\dfrac{5\pi}{12}\right)=\sqrt{\dfrac{1-\dfrac{\sqrt3}{2}}{2}}

\longrightarrow\cos\left(-\dfrac{5\pi}{12}\right)=\dfrac{\sqrt3-1}{2\sqrt2}

and,

\longrightarrow\sin\left(-\dfrac{5\pi}{12}\right)=\sqrt{\dfrac{1-\cos\left(-\dfrac{5\pi}{6}\right)}{2}}

\longrightarrow\sin\left(-\dfrac{5\pi}{12}\right)=\sqrt{\dfrac{1+\dfrac{\sqrt3}{2}}{2}}

\longrightarrow\sin\left(-\dfrac{5\pi}{12}\right)=-\dfrac{\sqrt3+1}{2\sqrt2}

Hence the equation of our line becomes,

\displaystyle\longrightarrow x\left(\dfrac{\sqrt3-1}{2\sqrt2}\right)-y\left(\dfrac{\sqrt3+1}{2\sqrt2}\right)=\sqrt2

\displaystyle\longrightarrow\underline{\underline{\left(\sqrt3-1\right)x-\left(\sqrt3+1\right)y=4}}

Hence (A) is the answer.

Similar questions