Find five rational number between -2 and -3.
Please answer it.
Answers
Step-by-step explanation:
know, sum of any two sides of a triangle is greater than the third side.
\begin{gathered}\sf \: \implies \: OD + OC > CD - - - (3) \\ \\ \end{gathered}
⟹OD+OC>CD−−−(3)
In \triangle△ OAD
We know, sum of any two sides of a triangle is greater than the third side.
\begin{gathered}\sf \: \implies \: OD + OA > AD - - - (4) \\ \\ \end{gathered}
⟹OD+OA>AD−−−(4)
On adding equation (1), (2), (3) and (4), we get
\begin{gathered}\sf \: 2(OA + OB +OC + OD) > AB + BC + CD + AD \\ \\ \end{gathered}
2(OA+OB+OC+OD)>AB+BC+CD+AD
\begin{gathered}\sf \: 2(OA + OC + OB + OD) > AB + BC + CD + AD \\ \\ \end{gathered}
2(OA+OC+OB+OD)>AB+BC+CD+AD
\begin{gathered}\sf \: 2(AC + BD) > AB + BC + CD + AD \\ \\ \end{gathered}
2(AC+BD)>AB+BC+CD+AD
\begin{gathered}\sf \:\sf \: \implies \: AB + BC + CD + AD < 2(AC + BD) \\ \\ \end{gathered}
⟹AB+BC+CD+AD<2(AC+BD)
Hence, the given statement is true and justified.