Math, asked by talrejameet41, 8 months ago

Find four consecutive terms in an A.P. such that
the sum of the two middle terms is 24 and
product of the two end terms is 63.​

Answers

Answered by TheProphet
20

S O L U T I O N :

Let the four consecutive terms in an A.P. are;

  • a - 3d
  • a - d
  • a + d
  • a + 3d

\underline{\underline{\tt{According\:to\:the\:question\::}}}

\underbrace{\bf{1^{st}\:case\::}}

\mapsto\tt{(a-d)+(a+d) = 24}

\mapsto\tt{a\cancel{-d}+a\cancel{+d} = 24}

\mapsto\tt{2a = 24}

\mapsto\tt{a= \cancel{24/2}}

\mapsto\bf{a = 12}

\underbrace{\bf{2^{nd}\:case\::}}

\mapsto\tt{(a-3d)\times (a+3d) = 63}

\mapsto\tt{a(a + 3d) - 3d(a + 3d)  = 63}

\mapsto\tt{a^{2} \cancel{+ 3ad - 3ad} - 9d^{2} = 63}

\mapsto\tt{a^{2} - 9d^{2} = 63}

\mapsto\tt{(12)^{2} -9d^{2} = 63 \:\:  [\therefore a= 12]}

\mapsto\tt{144 - 9d^{2} = 63}

\mapsto\tt{-9d^{2} = 63 - 144}

\mapsto\tt{-9d^{2} = -81}

\mapsto\tt{d^{2} =\cancel{-81/-9}}

\mapsto\tt{d^{2} = 9}

\mapsto\tt{d = \sqrt{9}}

\mapsto\bf{d = 3}

Thus;

A R  I T H M E T I C  P R O G R E S S I O N :

\bullet\sf{a-3d = [12 - 3(3) ] = [12 - 9] = \boxed{\bf{3}}}

\bullet\sf{a-d = [12 - 3 ]  = \boxed{\bf{9}}}

\bullet\sf{a+d = [12 +3] =  \boxed{\bf{15}}}

\bullet\sf{a+3d = [12 +3(3) ] = [12 + 9] = \boxed{\bf{21}}}

Similar questions