find four consecutive terms in an ap such that the sum of the middle twk term is 18 and the product of two end is 45
Answers
Answered by
1
Answer:
therfore terms are 3,7,11,15 (when d positive) and 15,11,7,3(when d is negative)
Step-by-step explanation:
let (a-3d),(a-d),(a+d) ,(a+3d) be four consecutive terms in an A.P.
(a-d)+(a+d)=18
2a=18
a=9
(a-3d) (a+3d)=45
(9-3d)(9+3d)=45
9²-(3d)²=45
81-9d²=45
-9d²=45-81
-9d²=(-36)
9d²=36
d²=4
d=2
hence,
(a-3d)= 9-3×2=9-6=3
(a-d)=9-2=7
(a+d)=9+2=11
(a+3d)=9+3×2=9+6=15
therfore terms are 3,7,11,15 (when d positive) and 15,11,7,3(when d is negative)
Answered by
0
Answer:
3,7,11,15 and 15,11,7,3
Similar questions