Math, asked by soham6670, 2 days ago

find Fourier transform of f(x)=e^-|x| , -infinity to +infinity

Answers

Answered by gamingmafiagaming
0

Answer:

\huge\mathcal\pink{Dear \: user}Dearuser

\huge\texttt\green{please check the question again}please check the question again

Answered by rishikeshm1912
0

Given:

f(x) = e^{-\left | x \right |}

To find:

Fourier transform

Solution:

we know that,

     \hat{f}(\xi ) = \int_{-\infty }^{\infty } e^{i\xi t}e^{-\left | t \right |} dt

now,

 \hat{f}(\xi ) = \int_{0 }^{\infty  } e^{i\xi t}e^{-t} dt + \int_{-\infty }^{0} e^{i\xi t}e^t dt

         = \left [ \tfrac{1}{i\xi -1}.e^{(i\xi -1)t} \right]^\infty _0 + \left [ \tfrac{1}{i\xi +1}e^{(i\xi +1)t} \right ]^0_{-\infty }

         = \lim_{a\rightarrow \infty }\left [ \tfrac{1}{i\xi -1}.e^{(i\xi -1)t} \right]^a _0 + \lim_{a\rightarrow \infty }\left [ \tfrac{1}{i\xi +1}e^{(i\xi +1)t} \right ]^0_{-a }

since, \lim_{a\rightarrow \infty }e^{(i\xi -1)a}=0  

        similarly, \lim_{a\rightarrow \infty }e^{(i\xi +1)(-a)}=0

so, we have

         = -\frac{1}{i\xi -1} + \frac{1}{i\xi +1}

thus,

         \hat{f}{(\xi)} = \frac{2}{1+\xi ^2}

This is the required Fourier transform.

       

Similar questions