Math, asked by neerajvermag11, 1 year ago

Find from first principles the derivative of the sin x²

Answers

Answered by HimanshuP
6
dy/dx(sinx2) = (cosx^2)(2x)

neerajvermag11: Out of understand
neerajvermag11: OK
neerajvermag11: I understand
HimanshuP: ok
HimanshuP: can u mark this as brainliest
Answered by amirgraveiens
44

The derivative of the sin x² using first principles is 2\times x\times cos(x^2).

Step-by-step explanation:

Given:

Using first principle, derivative of the sin x^2 is,

\lim_{t \to 0} \frac{sin((x+t)^2-sin(x)^2)}{t}

= \lim_{t \to 0} \frac{2sin(\frac{(x+t)^2-x^2}{2})cos(\frac{(x+t)^2+x^2}{2})}{t}

Multiply and divide by \frac{2x+t}{2}, we get

= \lim_{t \to 0} \frac{2sin(\frac{2xt+t^2}{2})cos(\frac{((x+t)^2+x^2)}{2} )}{t} \times\frac{\frac{2x+t}{2} }{\frac{2x+t}{2} }

=\lim_{t \to 0}2\frac{sin(\frac{2xt+t^2}{2})}{\frac{2xt+t^2}{2}} \times\frac{\frac{2x+t}{2} }{1} \times cos\frac{(x+t)^2+x^2}{2}

=\lim_{t \to \0} 2\times 1\times \frac{\frac{2x+t}{2} }{1} \times cos\frac{(x+t)^2+x^2}{2}

=2\times \frac{2x+0}{2}\times cos\frac{(x+0)^2+x^2}{2}

=2\times x\times cos(x^2)

Similar questions