Math, asked by muvasreetham22, 11 months ago

Find general solution for given expression...

Pls answer this...

If u answer without explanation or spam,
Then u r a DONKEY...

Attachments:

Answers

Answered by Anonymous
46

Answer:

\large  \bold\red{x = n\pi  \pm  {( - 1)}^{n}  \frac{\pi}{4}\:\:;n=Integer }

Step-by-step explanation:

Given,

3 { \sin }^{4} x +  { \cos}^{4} x = 1

But,

We know that,

  •  { \cos}^{2}  \alpha  = 1 -  { \sin}^{2}  \alpha

Therefore,

Substituting the values,

We get,

 =  > 3 { \sin }^{4} x +  {(1 -  { \sin }^{2}x) }^{2}  = 1 \\  \\  =  > 3 { \sin }^{4} x + \cancel{ 1} - 2 { \sin}^{2} x +  { \sin}^{4} x =  \cancel{1} \\  \\  =  > 4 { \sin }^{4} x - 2 { \sin }^{2} x = 0 \\  \\  =  > 2 { \sin }^{2} x(2 { \sin}^{2} x - 1) = 0

Therefore,

We have two Equations,

\bold\purple{\underline{Case\:I}}

 =  > 2 { \sin }^{2} x = 0 \\  \\  =  >  { \sin }^{2} x = 0 \\  \\  =  >  \sin x= 0

Therefore,

General Solution will be,

 \large \boxed{ \bold {x = n\pi \: }}

  • Where, n is an integer

\bold\purple{\underline{Case\:II}}

  =  > 2{ \sin }^{2} x - 1 = 0 \\  \\  =  >2  { \sin }^{2} x = 1 \\  \\  =  >  { \sin }^{2} x =  \frac{1}{2}  \\  \\  =  >  \sin x =  \pm \frac{1}{ \sqrt{2} }   \\  \\  =  >  \sin x  =  \sin( \pm \frac{\pi}{4} )

Therefore,

General Solution will be,

 \large \boxed{ \bold{x = n\pi  \pm  {( - 1)}^{n}  \frac{\pi}{4} }}

  • Where, n is an integer

Hence,

Combining both the results,

We have general solution for the given Equation as,

\large \boxed{  \large\bold \pink{x = n\pi  \pm  {( - 1)}^{n}  \frac{\pi}{4} }}

  • Where , n is an integer.
Similar questions