Math, asked by suriyamammu1260, 8 months ago

Find gof and fog, if
f(x)=8x^{3}\\g(x)= x^{\frac{1}{3} }

Answers

Answered by RvChaudharY50
78

Gɪᴠᴇɴ :-

  • f(x) = 8x³
  • g(x) = x^(1/3)

Tᴏ Fɪɴᴅ :-

  • gof .
  • fog.

Sᴏʟᴜᴛɪᴏɴ :-

gof :-

→ g(x) = x^(1/3)

→ g[f(x)] = [f(x)]^(1/3)

→ gof(x) = (8x³)^(1/3)

→ gof(x) = [(2x)³]^(1/3)

→ gof(x) = (2x)^(3 * 1/3) { using (a^b)^c = (a)^(b*c) }.

→ gof(x) = 2x (Ans.)

___________________

fog :-

f(x) = 8x³

→ f[g(x)] = 8[g(x)]³

→ fog(x) = 8[x^(1/3)]³

→ fog(x) = 8(x)^(1/3 * 3)

→ fog(x) = 8 * x

→ fog(x) = 8x (Ans.)

___________________

Answered by Anonymous
8

\rule{200}3

\huge\tt{GIVEN:}

  • f(x)=8x^{3}\\g(x)= x^{\frac{1}{3} }

\rule{200}2

\huge\tt{TO~FIND:}

  • Find gof & fog

\rule{200}2

\huge\tt{SOLUTION:}

GOF =

↪g(x) = x^(1/3)

↪g[f(x)] = [f(x)]^(1/3)

↪ gof(x) = (8x³)^(1/3)

↪gof(x) = [(2x)³]^(1/3)

↪gof(x) = (2x)^(3 × 1/3) { using (a^b)^c = (a)^(b×c) }.

↪ gof(x) = 2x

\rule{200}1

FOG =

↪f(x) = 8x³

↪f[g(x)] = 8[g(x)]³

↪fog(x) = 8[x^(1/3)]³

↪fog(x) = 8(x)^(1/3 * 3)

↪fog(x) = 8 × x

↪ fog(x) = 8x

\rule{200}3

Similar questions