Find gof and fog, if
Answers
Answered by
78
Gɪᴠᴇɴ :-
- f(x) = 8x³
- g(x) = x^(1/3)
Tᴏ Fɪɴᴅ :-
- gof .
- fog.
Sᴏʟᴜᴛɪᴏɴ :-
❶ gof :-
→ g(x) = x^(1/3)
→ g[f(x)] = [f(x)]^(1/3)
→ gof(x) = (8x³)^(1/3)
→ gof(x) = [(2x)³]^(1/3)
→ gof(x) = (2x)^(3 * 1/3) { using (a^b)^c = (a)^(b*c) }.
→ gof(x) = 2x (Ans.)
___________________
❷ fog :-
→ f(x) = 8x³
→ f[g(x)] = 8[g(x)]³
→ fog(x) = 8[x^(1/3)]³
→ fog(x) = 8(x)^(1/3 * 3)
→ fog(x) = 8 * x
→ fog(x) = 8x (Ans.)
___________________
Answered by
8
- Find gof & fog
GOF =
↪g(x) = x^(1/3)
↪g[f(x)] = [f(x)]^(1/3)
↪ gof(x) = (8x³)^(1/3)
↪gof(x) = [(2x)³]^(1/3)
↪gof(x) = (2x)^(3 × 1/3) { using (a^b)^c = (a)^(b×c) }.
↪ gof(x) = 2x
FOG =
↪f(x) = 8x³
↪f[g(x)] = 8[g(x)]³
↪fog(x) = 8[x^(1/3)]³
↪fog(x) = 8(x)^(1/3 * 3)
↪fog(x) = 8 × x
↪ fog(x) = 8x
Similar questions